Partly dissipative systems in uniformly local spaces
نویسندگان
چکیده
منابع مشابه
Asymptotic Behavior of Stochastic Partly Dissipative Lattice Systems in Weighted Spaces
We study stochastic partly dissipative lattice systems with random coupled coefficients and multiplicative/additive white noise in a weighted space of infinite sequences. We first show that these stochastic partly dissipative lattice differential equations generate a random dynamical system. We then establish the existence of a tempered random bounded absorbing set and a global compact random a...
متن کاملAttractors for Partly Dissipative Reaction Diffusion SYstems in R^n
In this paper, we study the asymptotic behavior of solutions for the partly dissipative reaction diffusion equations in ޒ n. We prove the asymptotic compact-ness of the solutions and then establish the existence of the global attractor in 2 Ž n .
متن کاملPullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کاملStability of local quantum dissipative systems
Open quantum systems weakly coupled to the environment are modeled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that decompose into a sum of local interactions with decreasing strength with respect to the size of their ...
متن کاملUpper Semicontinuity of the Attractor for Lattice Dynamical Systems of Partly Dissipative Reaction-diffusion Systems
Lattice dynamical systems arise in various application fields, for instance, in chemical reaction theory, material science, biology, laser systems, image processing and pattern recognition, and electrical engineering (cf. [6, 7, 13]). In each field, they have their own forms, but in some other cases, they appear as spatial discretizations of partial differential equations (PDEs). Recently, many...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2004
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm100-2-6